
Accessibility
The Why and How of Inclusive Design

Alison Walden
Director of Technology, SapientRazorfish

Mike Quattrin
Senior Experience Developer, SapientRazorfish

4A’s Digital Horizons Series

4A’s Digital Horizons Series
Volume I, No. 3

A publication of the 4A’s (American Association of
Advertising Agencies), the 4A’s Digital Horizons
Series explores the current and near future
landscape of digital technology and innovation
in the advertising industry.

Contributing authors represent digital thought
leaders and practitioners from member agencies
and associated industries.

For more information about the series, contact
Chick Foxgrover - cfoxgrover@aaaa.org

4A’s
1065 Avenue of the Americas (5 Bryant Park)
New York, NY 10018
+1 212.682.2500
www.aaaa.org

4A’S BULLETIN NO. 7927

WINTER 2018 4A’S - ACCESSIBILITY	 3

Digital experiences are pervasive and growing in importance.
A combination of legal requirements, best practices and demo-
graphic realities make it important for agencies to understand
the field of inclusive design.

Inclusive design addresses a variety of legal requirements,
implements best practices—from initiation to maintenance—
and makes experiences more accessible to our clients’ audi-
ences, increasing the scope and reach of who can engage with
brands through digital channels.

Creating inclusive experiences that meet accessibility guidelines
is not only the right thing to do from a human perspective, it
also makes good business sense as we make experiences avail-
able to a wider audience, and from a client perspective by help-
ing to protect our clients from potential lawsuits. Read on for a
detailed analysis of how to approach accessibility compliance
and overcome common challenges faced by disciplines creating
accessible experiences.

In this paper we’ll offer a usable definition of inclusive and
accessible design as well as a case for implementing inclusive
design for clients; an overview of current government rules and
regulations and how they impact digital experience design; and
a top-level view of implementing inclusive design, followed by
a role-by-role, detailed description of the process as well as an
addendum dealing with specifics and best practices for design
and QA. Any agency wishing to get started with inclusive design
will find the necessary tools in these pages.

By Alison Walden and Mike Quattrin

4A’s Digital Horizons Series

1.	 Introduction
2.	 The Case for Inclusive

Design
3.	 WCAG Mapping
4.	 Team Roles
5.	 Process and Tasks
6.	 Addendum: Accessible

Design and QA Best
Practices

7.	 Table: Manual Testing by
Guideline

Accessibility
The Why and How of Inclusive Design

4	 WINTER 2018 4A’S - ACCESSIBILITY

INTRODUCTION

Defining Inclusive/Accessible

We define “inclusive design” to mean experiences that are usable
and accessible by the most diverse set of individuals with a variety
of skill levels, challenges, and backgrounds. We define “accessible”
to mean that everyone, regardless of disability or special needs,
can access content.

The Internet for People with Disabilities

From the late 1990s onward, the internet gradually became part of
our lives, until in 2011 it was estimated that 2.1 billion people reg-
ularly used “the web”.1 With the growth in internet usage, physi-
cal modes of content have been steadily replaced by electronic
modes of content, and commerce at physical locations has been
replaced by electronic commerce storefronts. This shift had the
potential to remove many of the barriers to communication that
existed for people with disabilities in the physical world, but only if
websites were designed and developed accessibly.

Most people today can hardly conceive of life without the internet.
Some have argued that no other single invention has been more
revolutionary since Gutenberg’s printing press in the 1400s. Now,
at the click of a mouse, the world can be “at your fingertips”—
that is, if you can use a mouse...and see the screen...and hear the
audio—in other words, if you don’t have a disability of any kind.2

The web is recognized as “an increasingly important resource in
many aspects of life: education, employment, government, com-
merce, health care, recreation, and more.” 3 It is critical that inter-
net content be designed and developed in an accessible way so
that everyone can use the web, regardless of disabilities. If content
creators from across disciplines work together, the potential of the
web to provide “unprecedented access to information and interac-
tion for many people with disabilities” 4 can be realized.

Many courts and lawmaking bodies, both in the U.S. and interna-
tionally, have recognized the increasing importance of the internet
in everyday life by establishing standards for electronic and infor-
mation technology to ensure that digital experiences are accessi-
ble to all individuals regardless of disabilities.

As digital experiences become more pervasive, the need for
inclusive design practices becomes more critical. The ubiquity
of mobile computers—smartphones—means that generational
cohorts who are not “digital natives” still consume digital expe-
riences at ever increasing rates. As these populations grow older,
the toll of the human condition prevents people from seeing that
light weight, light grey font on a white background. So it pre-
vents customers from using the client’s product. Inclusive design
is a good practice because it delivers the most value to the widest
audience possible.

THE CASE FOR INCLUSIVE DESIGN

The Myth of the Minority User

A full 16% of the U.S. population had some kind of disability in
2011. It may sound like a minority of users, but the numbers are
significant. The number of blind users in the U.S. 6 almost matches
the entire Canadian population that is using the internet 7. This is
significant! Along with the importance of providing basic access to
content, tapping into an audience of this size makes sense from a
business perspective.

ACCESSIBILITY MYTHS 5

■■ Accessibility can be taken care of by developers,
and nobody else needs to concern themselves
with it. Inclusive design is a critical part of making
an experience accessible.

■■ Creating separate accessible versions of a web-
site is a good idea. Users who self-identify as
needing an accessible website experience “fear of
missing out.” They often assume that the accessible
version of the website is not updated as frequently,
or is missing some interesting aspect provided to
the “regular” website. We don’t want to make peo-
ple feel marginalized.

■■ Accessible design is ugly. Accessible design is as
ugly as a designer makes it. Contrast rules are just
one more constraint upon many when designing
for the web. The idea is to think of these as beauti-
ful constraints, and to find a way to make accessible
designs beautiful.

■■ Accessible sites take much more effort to build.
Once teams are accustomed to thinking in terms of
inclusive design, the lead time to make an experi-
ence accessible decreases. Consider the lead time
teams used to need to make a responsive experi-
ence. But now that teams know how to do that, it
takes considerably less time than it did originally.
Also, it takes much longer to fix accessibility issues
on a site later than to build in accessibility thinking
and inclusive design from the outset.

■■ You can implement an accessible site and call it
a day. You must maintain it or the experience will
gradually deteriorate and become inaccessible.

WINTER 2018 4A’S - ACCESSIBILITY	 5

Figure 1 shows worldwide internet usage by select countries from
2015, compared to the number of people using the internet in the
U.S. with accessibility needs.

Let’s focus on vision problems in the U.S. Of the 10 million people
with vision issues, some people are completely blind, some have
low vision, and some are color blind. How does this affect them?

Many non-sighted people use screen readers to access the inter-
net through a web browser. A screen reader reads the content on
the page from top to bottom in a linear fashion. Compare that to
how a sighted person can experience a page. A sighted user ben-
efits from seeing images, scanning the page layout and noticing
columns, and being able to recognize sections of the page like
navigation, and custom controls. There is a detailed analysis later
on the screen reader experience.

People who use screen magnifiers don’t have a good experi-
ence with text embedded in images. As text embedded in images
becomes magnified, it becomes pixelated and more difficult to
read (Figure 2). This doesn’t happen with “live” text that is not
embedded in images.

Low vision impacts users’ experience online in various ways (Figure
3). People with glaucoma experience text as though they are look-
ing through a straw. Macular degeneration, when blood vessels at
the back of the eye leak fluid, obscures portions of the user’s focus
area. Diabetic retinopathy, the leaking of retinal blood vessels, also
obscures text and makes it more difficult to read. People with cat-
aracts will experience lower contrast in web experiences. Color
blind users also experience a lack of contrast depending on the
color combination used.

Inclusive Design for All

What about your average user? With the advent of smartphones,
we are all subject to a degree of new challenges when trying to
navigate online experiences. Glare on a screen can cut down on
anyone’s ability to view content.

In today’s omnichannel landscape, it is more important than ever
that we design and develop robust experiences that will behave
as expected across a variety of form factors. Experiences that are
not designed and developed properly will fail in unexpected ways,
which will result in frustration for all users. Designing and develop-
ing experiences with accessibility principles in mind can provide
a sense of security that experiences will be more robust across any
form factor.

People surfing the internet have varying degrees of ability and
dexterity. We have all ages of people interacting with online con-
tent, with degrees of vision loss, who would not even self-identify
as having vision issues. When we design for accessibility, nobody
is left out. “Design for people who are young, old, power users,
casual users, and those who just enjoy a quality experience.” 8
Websites designed with accessibility and inclusivity in mind create
a better experience for all users, not just those with disabilities.

Who Benefits from Inclusive Design?

In short, everyone, including agency and client, benefits. Not only
is inclusive design the right thing to do; but by building in accessi-
bility from the beginning, the agency saves time and expense for
the client, now and in the future; by offering expertise in this area,
the agency ensures the widest possible audience for the client’s
offerings. And, it’s the right thing to do.

U.S. Laws Pertaining to Accessibility Compliance

A variety of laws and rules exist within the United States mandat-
ing levels of accessibility compliance for Federal and State govern-
ment websites, as well as private companies. They include but are
not limited to:

■■ Section 508—an amendment to the United States Workforce
Figure 3

Figure 1

Figure 2

6	 WINTER 2018 4A’S - ACCESSIBILITY

Rehabilitation Act of 1973, which applies to Federal govern-
ment agencies.

■■ The American Disabilities Act (ADA)—a comprehensive civil
rights law prohibiting discrimination on the basis of disability,
drafted in 1990, that includes Titles II and III.

■■ Title II applies to State and local government entities.

■■ Title III applies to places of public accommodation (pri-
vate entities whose operations affect commerce and that
fall into one of 12 categories listed in the ADA, such as res-
taurants, movie theaters, schools, day care facilities, recre-
ational facilities, and doctors´ offices).

Status: In 2010, an Advance Notice of Proposed Rulemaking was
published by the U.S. Department of Justice (DOJ) seeking com-
ments on what standards should be adopted with respect to com-
pliance by public accommodations under Title III of the ADA:
(1) standards then-applicable to federal agencies under Section
508, or (2) the Web Content Accessibility Guidelines (WCAG) 2.0
Level AA. These DOJ rules have been delayed several times, and
will now not be issued until at least 2018. In the intervening years,
WCAG 2.0 level AA has, in fact, become the new standard for
accessibility under Section 508 for federal agency websites. The
U.S. Architectural and Transportation Barriers Compliance Board
(also known as the Access Board), the federal agency responsible
for ensuring accessibility of government agency websites, adopted
the WCAG standards through a January 2017 rulemaking.9 In
addition, at least one federal agency has applied the WCAG 2.0
Level AA standard to private industry; notably, the Department of
Transportation has imposed the standard on airline websites and
airport kiosks.10

Lawsuits alleging violations of the ADA are now not uncommon for
companies that readily qualify as public accommodations, such as
those in the retail, hospitality, and financial services industries. One
review found that there had been at least 751 such suits between
January 2015 and August 15, 2017, and that such suits were being
filed at an ever-accelerating pace.11 While some of these suits have
been filed by public interest groups on behalf of the disabled com-
munity, many more derive from plaintiffs’ law firms, likely drawn
to the ADA’s award of legal fees. In the absence of clear guidance,
ensuring compliance with WCAG 2.0 Level AA is the best way to
minimize the risk of ADA non-compliance at this time.

About WCAG

The Web Content Accessibility Guidelines (WCAG 2.0) are a
series of standards that define how to make content accessible for
people using digital devices. Agencies are best served by follow-
ing WCAG 2.0 guidelines in order to create digital experiences
that conform with existing, and future, laws and regulations.

The guidelines have levels of conformance that are broken into
three levels of increasing constraints: A, AA and AAA, which are
testable by people and tools.

DOJ regulations that will broadly impact public accommodations
transacting business through websites and mobile apps are cur-
rently stuck in the rulemaking process, but there are many exam-
ples in which the DOJ has already acted to enforce the WCAG 2.0
Level AA standard. For example, the DOJ entered into a Consent
Decree with H&R Block in 2014, in which H&R Block was required
to comply with the standard to ensure accessibility for all of its
websites and mobile apps. Other countries have adopted, or
are adopting, legal standards that follow the WCAG 2.0 require-
ments. Following these standards should help our clients avoid lit-
igation as well as deliver more inclusive experiences for a brand
audience.12

Conforming to WCAG 2.0 guidelines requires understanding in
each discipline and adherence to best practices. With that under-
standing, it’s possible to deliver high-quality, inclusive experiences
to everyone.

WCAG Principles

The goal of the WCAG guidelines is to help creative and techni-
cal teams to create experiences in which the content is perceiv-
able, the interactions are operable, the content and functionality
are understandable, and the underlying code is robust. Hence, the
WCAG guidelines are organized along four principles: Perceivable;
Operable; Understandable; Robust (Figure 4, opposite page). In
plain language, we can think of the guidelines as organized as in
Figure 5, opposite page.

This paper will not go through each of the guidelines one by one.
Enough has been written to describe the guidelines, and this infor-
mation is thoroughly covered by the W3C 13 and other organiza-
tions like WebAIM.

In the following sections, we’ll outline the real-world challenges
that each discipline will face when trying to adhere to the guide-
lines, and how to overcome these challenges.

WCAG MAPPING

Historically, creating accessible web experiences was considered
the realm of the developer, but we recognize today that it is critical
for experiences to be designed up front in an inclusive way. Having
an inclusive mindset is the most critical factor in designing experi-
ences that everyone will enjoy.

WINTER 2018 4A’S - ACCESSIBILITY	 7

Starting at the Beginning

It’s a common misconception that web accessibility can be ignored
until development is almost complete, and then we can ask the
developer to step in and fix all of the accessibility issues.

In reality, accessible digital experiences start in the design phase
with the experience designer. The experience designer must
take into consideration the linear keyboard user’s experience.14
Visual designers must design the experience in an accessible way.
Copywriters also play a role in creating an accessible experience.

The Keyboard User’s Experience

Keyboard navigation is used as a benchmark of accessibility com-
pliance, as many assistive devices are based on the type of navi-
gation that can be done with a keyboard. In general, navigating
a website by keyboard differs in one critical way from navigating
with a mouse pointer: With a mouse pointer, the user can click any-
where on the site and experience the content in the order they
choose; whereas by keyboard, a user is forced to navigate the
website in a linear way.

Consider a typical e-commerce product grid. An online shopper
using their keyboard to navigate the page would have a long jour-
ney to tab through the page to finally get to the product grid. They
would be taken through each element (e.g., link or form element)
in a linear order, from the top left corner of the screen to the bot-
tom right corner of the screen. In a typical page layout, tab focus
would move through elements like the logo (top left), followed by
utility links in the top right (e.g., “Choose a country” or “Log in”).
Then followed by category navigation (often in a horizontal bar
across the top of the screen), any links in the promotional banner,
the left navigation, the product filters, and each item in the
product grid.

The experience designer must consider this linear experience and
offer way-finding cues that would assist a non-sighted keyboard
user to orient themselves to the content, and provide helpful
methods to navigate that content via the keyboard. For exam-
ple, accessibility guidelines require that a “skip navigation” link be
placed before the global navigation on the site. This link can be
hidden and only appear on keyboard focus. This is an in-page link
that allows a keyboard user to skip past the navigation menu links
and land directly in the content area. You can see that this would
be helpful for someone navigating with a keyboard.

The specifications for the user experience, which include consid-
eration for the linear experience, must be documented in wire-
frames and visual design style guides. If accessibility is considered
at these stages and documented for the developer, about 75% of
the accessibility issues we typically see would not exist, and experi-
ences would be designed in a way so that they made sense for key-
board users.

Figure 4

Figure 5

8	 WINTER 2018 4A’S - ACCESSIBILITY

WCAG Level Compliance: A vs AA

WCAG level A compliance is the most basic level of compliance
possible. Features included in level A are referred to as the “Must
have” features. However, legal entities across the globe are insist-
ing on level AA compliance, referred to as the “Should have” fea-
tures. Here are some of the extra accessibility features needed to
adhere to AA over A, and some of their impacts. (Note: This list
doesn’t include all of the level A criteria, just the additional criteria
required for AA, over and above A.)

Minimum contrast requirement for text on a background There
are contrast ratio rules that must be followed for AA that do not
exist for A. I use the following web-based contrast checker, which
provides pass/fail criteria based on font size: http://webaim.org/
resources/contrastchecker/

Time-based media impacts “If A level means that you provide
captions for prerecorded audio content in synchronized media
(unless there’s a clearly labeled media alternative for text), then AA
means that you provide captions for all live audio content in syn-
chronized media and that there’s an audio description available for
all prerecorded video content in synchronized media.” 15

Slightly longer front-end development time because developers
must build interfaces in which text size can be doubled through the
browser with the experience still remaining legible. This requires
an additional unit test for front-end developers and for the quality
assurance (QA) team. Sometimes it is not apparent how the text
should appear as it grows and needs design input. This can only be
tested in Firefox browser by zooming the text alone.

Possible production considerations if the client is relying on
text embedded in images for any of their campaign banners: “If
the same visual presentation can be made using text alone, an
image is not used to present that text.” (Web Content Accessibility
Guidelines (WCAG) 2.0—1.4.5)

A visible focus indicator is needed for AA. (As you tab through
the site, this shows you which element has focus.) This bene-
fits from a designer’s input and should have client sign-off on the
look and feel of the focus indicator. (Web Content Accessibility
Guidelines (WCAG) 2.0—2.4.7)

Different languages within a page need to be marked up as such
with a “lang” attribute. This is a simple task easily performed by
the web developer.

In summary, it takes slightly more care and effort both from a
design and developer perspective to adhere to level AA as
opposed to level A. Use this information to help inform your clients
of the difference. Remember that even the W3C does not recom-
mend trying to adhere to all of level AAA.16 Last but not least, be
aware that the trend is to support level AA from the onset, and this
is what we recommend.

TEAM ROLES

Project Manager

Because the project manager runs the entire project, he or she is in
a great position to ensure that the mechanisms that enable acces-
sibility compliance are in place. The first and probably most impor-
tant task is to lead the entire team through choosing the correct
WCAG level for the project and clarifying the requirements each
team member is responsible for. Many of the decisions made by
design/development teams will be in collaboration with the client.

Designer

As mentioned above, accessible experiences start with design.
Experience designers must consider the keyboard user’s needs
and account for these constraints in order to create a logical path
through the experience. Visual designers must ensure that content
is perceivable to all users (meets preset contrast rules).

Developer

Implementing the designer’s direction for accessibility may
depend on the developer’s familiarity with and use of building and
validating tools (see next section), and always on their awareness
of the predetermined accessibility goals. A good rule of thumb for
the developer is to always check all of their work with the keyboard
alone to make sure it functions properly.

Copywriter

Copywriters have a critical role in designing an experience inclu-
sively. Often they are required to think, and write, in an “alterna-
tive” way—one that bypasses generally accepted web terminology
in favor of even clearer directions.

QA

The QA team, through involvement and awareness of WCAG levels
and project specs from the beginning of the project, as well as by
choice of methodology and periodic testing, can deliver an effec-
tive and valid, accessible site efficiently and on time.

PROCESS AND TASKS

Critical Steps

Think of these three steps as Beginning, Middle, and Final “Must-
Dos” for the team:

Establish the level of compliance. Typically you should try to
adhere to WCAG level AA; however, some organizations prefer a

WINTER 2018 4A’S - ACCESSIBILITY	 9

mix of level A and AA guidelines. Level AAA compliance has not
been recommended as a general policy for entire sites, because
the W3C has noted that it may not be possible to satisfy all AAA
requirements for some content.

Design, develop, and write to meet the guidelines. Each team
creating content must understand the rules for meeting accessi-
bility requirements and understand how to measure compliance.
Ideally there should be an accessibility owner for each domain who
can act as a decision point when there are questions.

Test at each project phase. Testing for accessibility compliance
at each project phase before moving to the next phase enables
the team to more efficiently fix issues and allows for more flexibil-
ity in the experience. Resulting defects should either be fixed or
accepted before moving on to the next phase.

Common Inaccessible Design Paradigms

Avoid incorporating the following design paradigms into new
experiences, because they explicitly break WCAG 2.0 guidelines:

Do not use placeholder text instead of labels for form fields.
Studies show that not including a visible label that stays visible
puts too much of a cognitive load on individuals to remember what
information they need to provide.17 This is covered in the WCAG
level A guidelines. Guideline 1.1.1 states that form inputs must
have associated text labels. Where visible labels are incompati-
ble with the design, developers can add hidden labels that will be
read by the screen reader. However, visible labels are best.

Do not design experiences that include motion that lasts longer
than five seconds without including a way to stop the motion,
e.g., animated carousels. WCAG level A guideline 2.2.2 states that
automatically moving content that lasts longer than five seconds
can be paused, stopped, or hidden by the user. Typically this is
solved by not having interactions autoplay. In the case of carousels,
they should not be animated. Instead, they should be controllable
by the user via the keyboard or mouse.

You must explicitly warn users about changes in context, like
content that opens in a new window. WCAG level A guideline
3.2.2 states that when a user interacts with a control, it must not
result in a substantial change to the page that could confuse or dis-
orient the user. Typically this issue is solved by including an icon
next to a link to indicate that it opens in a new window.

Avoid overlaying text on background colors or imagery that do
not provide enough contrast. WCAG level AA guideline 1.4.3
states that text must meet a specific contrast ratio. Typically this
is solved through careful design. A client’s brand colors must be
carefully assessed in order to determine accessible color schemes
for text on a background color. When text overlays images, the
images should have a translucent overlay that contrasts with the
text in the foreground, and text should be of large enough size.

Design Elements That Must Be Documented

During the design phase of a project, make sure to provide docu-
mentation to developers in the following five areas:

Heading Structure

Remember the last time you wrote an essay? You probably had a
series of sections in your essay that each had a heading. Most likely
you had a table of contents that listed all your headings. If some-
one read your table of contents, they would have had a good idea
of what your essay was about.

This is what headings are for on a website. They should describe
the page they are on. Assistive devices like screen readers allow
users to navigate web pages by headings. This is one way that a
non-sighted person can “scan” a webpage, by choosing to hear all
the headings on the page. Listening to the headings allows them
to assess if the page is useful for them. If the headings are not
developed and written in a clear and proper way, they will not be
helpful to this audience.

The experience designer or copywriter should decide the head-
ing structure. The wireframe or content matrix should include an
annotation that describes the heading structure. A developer
should not decide the heading structure by herself (in absence of
documentation).

Hidden Way-Finding Cues

Screen reader users benefit from additional way-finding cues to
help them navigate a webpage such as “Bypass block links”.
This allows screen reader users to skip over repeated blocks
of content. Without them, screen reader users would have to tab
through repetitive blocks of content from page to page.
They are most often used to skip over navigation menus. Other
candidates for bypassing include filter menus or carousels with
many panels.

Bypass block links can be hidden by default, but should appear on
keyboard focus. They should allow the user to skip past the con-
tent block to the content immediately after. It’s important to test
these with your keyboard once they are implemented. Make sure
that you can tab once into the content area, and tab again into the
next interactive element in the content area.

Focus Order Information

Focus order is an important concept for keyboard accessibility. It
refers to the order that elements on the page receive keyboard
focus. The usual focus order for the Western world is from top to
bottom, left to right, the same way we read.

For keyboard users, a common way to access a website is to move
through the content by pressing the tab key. The tab key moves

10	 WINTER 2018 4A’S - ACCESSIBILITY

the focus state to links or form elements. Screen reader users can
have their device begin reading the page at any point.

Usually experiences benefit from implementing a default focus
order. There are instances where the focus order should be
changed. This is best determined by an experience designer.

The following flow illustrates a situation where the default tabbing
order should be overridden:

■■ User clicks on a link to log in to a website, and the log-in link
leads to a different page.

■■ By default, the first focused area on the page would probably
be in the top left-most link or form field. But in this instance,
the user is definitely there to log in. It makes sense here to put
the focus state on the first field in the sign-in form.

Again, this cannot be decided by a developer in absence of docu-
mentation. It must be annotated in the wireframe. The user expe-
rience designer should annotate the non- standard focus order to
completion, indicating where natural focus order should take over.

Visible Focus State Design

Visible focus state is the visual indicator that an element has focus.
It is common for designers to create a hover state for mouse users.
Usually the focus state should match the hover state. Try it out on
any website: Press your tab key now and try to see what the current
focused element is on the site. If implemented accessibly, you will
see that the navigation links along the top of the site get under-
lines, or change color, or have an outline. This is so keyboard users
can see which element has focus. If you can’t tell which element
has focus, you will have a taste of the frustration experienced regu-
larly by keyboard users trying to navigate an experience.

For developers to handle the focus state in their implementa-
tions, it must be defined in the style guide. Each browser has its
own default focus state. Either allow this to be used, or have the
designer create a new one that matches your client’s branding.

Many clients do not understand the value of the visible focus state.
When it is described in the style guide, the client has an oppor-
tunity to see it up front and ask questions about it. Note: Some
designers or clients have a concern that the visible focus state
looks ugly for non-keyboard users. Be aware that it can be devel-
oped in such a way that it only appears for keyboard users who
need it, not for mouse users.

Clear Link Labels

For users who navigate with a screen reader, many of them will
only hear link labels. They will not have any context on surrounding
information. That’s why it is important to make sure the link itself
(or the form field label) is meaningful.

Do this: “Learn more about our services”
Don’t do this: “Learn more”

Do this: “Edit my account settings”
Don’t do this: “Edit”

Sometimes the context is clear to a sighted user based on sur-
rounding content. In this case, indicate in the wireframe that the
developer should hide the additional content from sighted users.
This way, a sighted user who can gain context from the surrounding
content will see “Learn more.” A non-sighted user will hear, “Learn
more about our services.”

Usable Forms and Error Messaging

I often ask designers if they plan to enter their form design into
the coveted Form Design Awards. Usually they stare back at me
blankly. Sometimes they perk up and ask for more information
about these awards.

There are no Form Design Awards. Isn’t it great? We can put our
aesthetic goals aside and focus on making the form usable. Trust
me: forms are meant to be filled out. They don’t need to be flashy.
It’s okay if they aren’t ultra clean and sleek. However, you may find
that an accessible form looks great. Here are some form design
best practices that also make the form more accessible:

■■ Place the label above the form field, not beside it.

■■ Put a “required field” indicator inside the field’s label. It’s also
helpful to put “(optional)” within any optional field’s labels.

■■ Do not replace proper form labels with placeholder
text. Users of all ages and abilities complain about this.
Placeholder text disappears when a user clicks into the field
and begins to type. It can be hard to remember what content
the field needed (e.g., email address vs username).

■■ If fields do not have a visible label (e.g., search fields), provide
the annotation for a hidden label in the wireframes to ensure
the developer creates it in the code. Indicate the label text.
All form fields must have labels.

Figure 6

WINTER 2018 4A’S - ACCESSIBILITY	 11

Screen readers automatically read out form field labels when the
field has focus. The form error messaging flow should work in the
following way:

1.	 User fills out a field the wrong way.

2.	 User attempts to submit form.

3.	 The first form field that has an error message should automati-
cally gain keyboard focus.

4.	 The form field error message should be programmatically
appended to the field’s label.

In this way, the screen reader will read out the form field fol-
lowed by the error message text. Example: “Email address. Email
address is a required field.” The user can then fix this issue, then
tab through the rest of the form and hear any other error messages
along the way. It is helpful to describe this behavior in the wire-
frames, and to design error messages to naturally occur close to
the field’s label.

Other Design Issues

Audio and video files need captions and transcripts. When
designing or reskinning audio and video playing components, be
sure to provide a design for transcript links and a button to toggle
captions on and off. More details about accessible video and audio
will be found in the Addendum.

Some popular components are more difficult to design in an
accessible way due to their complexity. But because they are fre-
quently used, they should be discussed, specifically carousel or
slider components, calendars, and modal windows/lightboxes.
You’ll find detailed coverage in the Addendum.

Development Issues

Here are the top five most costly development issues, meaning
that they take the most time and effort to fix later if not done prop-
erly in the first place:

Text Alternatives

Guideline 1.1: Text Alternatives: Provide text alternatives for any
non-text content. All non-text content (like images or video) needs
a text alternative that describes the non-text content. Images on a
website need alternative text described in an alt attribute. It looks
like this in the code:

<img src=”myimage.jpg” alt=”Descriptive text for my
image”/>

Some general rules for creating alt attributes:

■■ All images need alt attributes. They should be provided to the
developer. If none are provided, the alt attribute is alt=””.

■■ Decorative images need empty alt attributes.

■■ All other imagery needs a descriptive alt attribute (should be
provided to the developer).

■■ For the most part, don’t bother using title attributes.

■■ You can’t place an alt attribute on a CSS background image.
Images should be marked up with an tag.

If you do not use an alt attribute on an image, the assistive device
will read the path to the image. This is annoying for non-sighted
users, and doesn’t help them understand the image content.

This guideline is easy to test with automated tools like the WebAIM
Chrome browser extension. Install this in your Chrome browser.
Test each page to see if there are alt attributes missing on your
site’s imagery by clicking on the button in the toolbar. Note that alt
attributes should be written with care by a copywriter.

Semantic Content

Guideline 1.3: Create content that can be presented in different
ways without losing information or structure.

■■ Use semantic markup to designate headings (<h1>), lists
(, , and <dl>), emphasized or special text (,
<code>, <abbr>, <blockquote>, for example), etc.

■■ Use tables for tabular data. Where necessary, associate data
cells with their headers using scope attributes (e.g.,
<th scope=”row”>Heading</th>). All data tables must have
captions. Often the heading for the table can be used as the
caption. If no caption or heading is provided, please ask the
user experience designer what the heading should be. Read
more about accessible data tables on the WebAIM site:
http://webaim.org/techniques/tables/data.

■■ Note for the integration team: Table captions, IDs, and head-
ers should be exposed to a CMS authoring tool.

DEVELOPMENT TIPS

Keep heading CSS styles separate from heading structure
in html. For example, create separate heading level CSS

classes, e.g., \ .primaryHeading, .secondaryHeading, etc.
with properties defined in CSS.

In this way, you can apply any style to any heading level,
and place headings on the page in the expected order.

12	 WINTER 2018 4A’S - ACCESSIBILITY

Heading Structure

Assistive devices have the ability to navigate web pages by struc-
ture. A user visiting the site using such a device can navigate the
site in various ways. They may choose to navigate through a list of
the headings to understand what content is available on a page.

Elements styled to look like headings will not appear as headings
for these users. Heading tags must be used for users to benefit
from this feature of their assistive device.

It can be tempting to assign styles to heading levels based on the
design style guide. When you do this, sometimes you will need to
skip heading levels on a page to meet the design requirements.
This breaks accessibility guidelines. See Figure 7, which illustrates
a style guide where the styles are tied to the heading level, then
the page design requires that headings appear out of order or
missing levels. A better strategy would be to apply heading styles
as a class to heading elements. In this way, proper heading struc-
ture can be observed and can still match the design.

This is demonstrated in Figure 8, where the developer applies
styles to a class, and can then create a page design with head-
ing styles in the correct order while still observing proper heading
levels.

Do this: <h1 class=“L1”>Level 1 heading</h1>
Don’t do this: <p class=“heading”>Level 1 heading</p>

Keyboard Operability

Guideline 2.1: Make all functionality available from a keyboard.This
is another one that is easy to test during development. Developers
are already tasked with testing their work across various browsers
and devices. Developers should simply tab through all functional-
ity with their keyboard as they are developing.

The importance of trying functionality with the keyboard alone
as part of regular unit testing cannot be overstated. I encour-
age developers reading this to try navigating one of the pages
you’ve built in the past with your keyboard to see if you are able
to achieve the site’s objectives. Try navigating common keyboard
problem areas like modal windows or flyout menus. Items that
show or hide content when the user clicks on them with the mouse
pointer need also to work when the user tabs through with their
keyboard. Content that is hidden because it is inactive (e.g., con-
tents of a hidden tab) should not be read out to screen readers, or
be focusable in its hidden state. These are complex challenges
that are rarely addressed unless it is done purposefully.

Accessible Forms

So much depends on form design. Forms are not meant to be
fancy. A form’s main purpose is to function as intended—to cap-
ture and submit information. As developers, you should be able to
contribute feedback to a design. Encourage designers to create
simple forms that observe the following best practices:

■■ The full form label is included with the field (hint: do not rely
on placeholder text)

■■ The form label is ideally above the form field. This way it will
fit easily into a narrow area (e.g., a mobile device).

Figure 7

Figure 8

WINTER 2018 4A’S - ACCESSIBILITY	 13

■■ Required fields are indicated with an asterisk.

■■ Browser default controls are the easiest to ensure accessibil-
ity compliance.

Developers need to ensure that form fields are programmatically
associated with their labels. This is a simple exercise that is too
often missed. Test it by tabbing through the fields of your form
with a screen reader enabled. Screen readers will not read out
form field names if the fields are not associated with their labels.
The impact will be that the user will not know what information
they should enter in the field.

Do this: <label for=”name”>Name:</label>
<input id=”name” type=”text” name=”textfield”>

Accessible Form Error Handling

3.2.2 On Input: When the user submits a form without filling out
all fields, they will get an error. Fixing this issue requires javascript
functionality that can be time-consuming to add later. There is also
a design dependency that can be difficult to amend if the design
was not done in an accessible way.

When a user fills out a form the wrong way and attempts to submit
it, errors preventing form submission are commonly bypassed by
the screen reader. Often the error will appear in red text, but non-
sighted users will not see it. The user gets no feedback about what
they did wrong so cannot fix the issue. It slams the door in the face
of a user of assistive devices.

This can be easily fixed during the design phase. The error mes-
sage for each field should appear next to or immediately below
that field’s label in the design. In the code, the error message
should be placed within the label itself. When an error is gener-
ated, focus should be programmatically placed on the first field
that has an error. The screen reader will automatically read out the
field’s label followed by the error message.

Using this method, the user’s experience will improve. Let’s say
the user forgot to provide their email address and tries to submit
the form. The keyboard focus will immediately be set on the email
field, and the error message will be appended to the label. The
user will hear “Email address. Please provide your email address.”
The email address field will have focus, the user will be able to
immediately start typing their email address and can tab through
the rest of the form and click “submit” again. See an accessible
form demo: https://www.w3.org/WAI/demos/bad/Overview.html

Copywriting

Copywriters have a critical role in designing an experience inclu-
sively. Their contributions include:

■■ Writing consistent, properly structured copy.

■■ Crafting clear labels and instructions for interactions and way-
finding cues that don’t rely on visual characteristics.

■■ Providing descriptive, appropriate text alternatives for non-
text content.

Structuring Copy

One of the ways a non-sighted user can navigate an experience
is by hearing a list of the page’s headings. This dialogue shown
below is from the Voiceover screen reader, which can be set up to
list the headings on the page.

As noted previously, headings are intended to describe the con-
tent outline of a page. A screen reader is able to determine the
headings on the page because of how a developer tags them
within the HTML code. For example, in Figure 9, a developer
would have created the following heading:

<h1>Women</h1>

The “h” stands for “heading,” and the number indicates the head-
ing level, where a lower number represents a higher heading level.
An <h1> is the highest level heading on a page. It is of critical
importance that a copywriter or content strategist determine the
heading structure for a page, and not the developer writing the
code. A developer is not the best person to determine the head-
ing structure. Specifications on how copy should be structured
should be provided to the developer before development begins.
This can be done as part of the content matrix or the wireframe.

Link Purpose in Context

We’re all familiar with the paradigm in which multiple links in an
experience have common link labels, although they point to differ-
ent places. For example, “Learn more” or “Shop now.”

It’s confusing to have multiple links with the same link label that
point to different places. There are three ways to deal with this:

■■ More descriptive link labels can be written. However, often
the design team will prefer that an experience have the same
look and feel for a repeated link label or button.

Figure 9

14	 WINTER 2018 4A’S - ACCESSIBILITY

■■ In many cases, the component will include a title, description,
and “Learn more” link. When this is the case, another option
is to remove the common link label altogether and make the
title the link instead. This is often done for articles.

■■ Finally, a copywriter can work with a developer to devise a
strategy where the title text is appended to the common link
label programmatically. In this case, a sighted user would see
the common link label, but a non-sighted user would hear the
common link label plus the title together for more context.

Clear Instructions

Instructions must be written clearly with a non-sighted user in mind.
The order of the instructions matters, and they must not rely on
color or other visual elements to convey content. For example, the
instruction “Click on the green button to continue” would not be
helpful to an individual who cannot perceive the color green.

Labels must be provided for all form elements and instructions
on which fields are required, or specific formatting requirements
should be communicated within the field’s <label> tag. This can be
done in multiple ways:

1.	 The label can include an asterisk. Historically, an asterisk has
been used to indicate that a form field is required. It is read
by the screen reader as “star,” but users understand what this
symbol means.

2.	 The label can include the word “required.”

3.	 Fields that are not required can include the word “optional.”
Avoid using this strategy on its own. Required fields must
always be indicated as well.

Copywriters are encouraged to try to use the experience after it is
developed with their keyboard and screen reader to see if it makes
sense. Typically only the desktop or mobile versions of an experi-
ence are tested, but this allows a lot of room for error if nobody is
testing with the keyboard.

Form error messaging is one area that is commonly overlooked. All
form fields should have carefully crafted, descriptive labels. Error
messages should be as descriptive as possible and still be concise.

Way-Finding Cues

There are portions of online experiences that must be written
although a sighted user will never see them. They will only be
heard by someone using a screen reader. These include:

■■ Bypass block links: In-page links that allow keyboard users to
skip over large blocks of content. A typical example of this is a

“skip navigation” link, although they can be placed anywhere
a keyboard user may prefer the option to skip over content.

■■ Table captions: Using the <caption> element will allow a
screen reader user to scan all of the tables on a page by name.
Typically whatever visible name is used for the table can be
reused for the <caption> element.

■■ Page titles: It is helpful (and required) to provide a descrip-
tive page title for every page. It is best for these to be written
in a consistent format. Try listening to your page title with the
screen reader (it is announced as the page loads). Some ele-
ments commonly used in titles, like the pipe character, may
be read orally in a way you don’t expect.

Non-Text Content

All prerecorded audio and video requires a descriptive text tran-
script and a text or audio description. The audio description is
intended to provide information about actions, characters, scene
changes, and other important contextual elements that are not
spoken in the main soundtrack.18 If all of the information in the
video is already provided from the audio track, no audio descrip-
tion is required.

Other Alternate Text

Text alternatives must be supplied for all non-text content. This
includes time-based media as outlined above, as well as images,
form image buttons, image maps, etc. Even decorative images
like spacer graphics, rounded corners, or other images that do not
convey content must have alternate text. Alternate text is provided
in the HTML code via an alt attribute. Please see the Alternative
Text Decision Tree, Figure 10, opposite page. A copywriter should
ideally decide what the content for that alt attribute should be,
based on the following rules:

■■ Decorative images which do not convey content should have
an empty alt attribute. This includes the above examples.

■■ Images that have a caption, or a description immediately next
to them in the body of text, take an empty alt attribute.

■■ Images that have text embedded within them should have an
alt attribute that matches the text embedded in the graphic.

■■ Images that are content should be described adequately.

■■ Images that are links should have an alt attribute that
describes the link purpose.

Quality Assurance

QA teams need not double their work in order to test and vali-
date an accessible-compliant site. Planning from the start, with
informed choices about what to test, when to test, and how to test,
will improve workflow and results. An argument for categorizing

WINTER 2018 4A’S - ACCESSIBILITY	 15

WCAG guidelines by discipline, along with testing guidelines and
recommendations, will be found in the Addendum. In brief, the
most efficient accessibility QA performed at the end-of-develop-
ment phase will focus on code-related defects alone.

Project Management

A project manager can help by asking these questions at various
project phases:

Is the client unsure what we mean about accessibility compli-
ance? The project manager should have an idea of the client’s
expectations and understanding about accessibility and arrange
for any necessary conversations to occur between the accessibility
lead and the client.

Is accessibility compliance accounted for in the estimate?

■■ If the team hasn’t designed an accessible site yet, they may
need training at the beginning of a project. Do this first! Give
each discipline at least half a day to ramp up.

■■ Internal reviews for accessibility should be added to the expe-
rience design and visual design phases. As designers become
more familiar with accessibility principles, these reviews will
have less feedback.

■■ The development phase should account for the extra unit test-
ing (by keyboard) of work. I have added 10% of core effort to
a project for developers who are new to accessibility, but this
number decreases drastically as developers become familiar,
and becomes insignificant for seasoned developers.

■■ Is an accessibility lead (or leads) accounted for in the project
estimate?

■■ Have tools been discussed and selected?

■■ Has a level of compliance been agreed upon?

Are accessibility reviews happening during each project phase?
The project manager should ensure that the required reviews are,
in fact, taking place.

When the project manager looks at the site, they should try access-
ing the site’s functionality with the keyboard.

Governance and Maintenance

Accessibility compliance is a journey, not a project. The following
measures should be observed in order to ensure that accessible
experiences remain accessible:

Review all site updates for accessibility compliance in every
phase (wireframe, design, development, and production code).

Name accessibility owners for each domain.

Be aware of introducing content issues (e.g., “Learn more” links,
images with no alt attribute).

Conduct periodic (quarterly) high-level accessibility audits on
the entire site:

■■ “Happy path”—path to register, do transactions, etc.

■■ Form completion and error handling

■■ Data table reading

■■ Heading structure

■■ Keyboard navigation (especially navigation)

Ideally, have visually challenged users audit the site as part of
the regular quality assurance team.

Figure 10

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

16	 WINTER 2018 4A’S - ACCESSIBILITY

CONTENTS

1.	 Carousel or Slider Components

2.	 Designing Calendars

3.	 Modal Windows or Lightboxes

4.	 Notes on Audio and Video

5.	 Guidelines by Discipline

6.	 QA: Automated and Manual Testing

CAROUSEL OR SLIDER COMPONENTS

Some people call them carousels; some call them sliders. A carou-
sel or slider is a content display paradigm in which a list of related
content items are presented in panels as a horizontal slide show.
The slide show is usually navigated by “next” and “previous” arrow
keys. Usually each item has a graphic, some text, and an associated
link. Carousels can have one or multiple panels in the viewable
area. Figure A shows a carousel that has three content panels, side
arrows to navigate, and dot indicators below to show pagination.

The carousel paradigm for displaying content exists for one rea-
son: because groups fight for that coveted front and center posi-
tion on a website home page. A carousel is one way to guarantee
that each group’s content has an opportunity to have a turn in that
spot. Studies show that users rarely interact with them (Runyon,
2013). However, they are also one of the most popular paradigms
web designers use to display content. The groups I mentioned
above like them a lot, for the reason I mentioned above. So, if we
are going to persist in using carousels, let’s all learn to design them
in an accessible way. We can consider three general personas who
could use them:

■■ Sighted users who use a mouse-pointing device

■■ Non-sighted users who use a screen reader and keyboard to
navigate

■■ Sighted users who use a keyboard to navigate

There are a variety of other users we could consider, but let’s start
with these three to create a baseline for accessibility. Let’s look at
Figure A again, showing a carousel with three panels in the visible
area. Assume there are two sets of three panels, so six panels in all.

For Sighted Users Who Use a Mouse Pointer

Sighted users perceive carousel content as a series of panels usu-
ally navigated via arrow buttons. The main carousel accessibil-
ity consideration for sighted users is to not make it auto-play. If
you must make the carousel auto-play, then you need to provide a
pause or stop button.

Employing navigation dots below the carousel is another great
visual cue for sighted users. The number of dots represents the
number of panel sets available to click through. An active state on
the dot tells the user which panel they are currently viewing. The
dots should be clickable for a person using a mouse, enabling
them to skip to the last panel.

“Previous” and “next” arrows should have disabled states. The
“previous” arrow should be disabled when the carousel is showing
the first panel. The “next” arrow should be disabled when the car-
ousel is showing the last panel. Avoid having carousels that “wrap
around,” allowing the user to cycle through the carousel repeat-
edly, as these are difficult to make accessible for keyboard users.

For People Who Use a Keyboard to Navigate

Consider that non-sighted people do not need to know that you
have collected content items for display in a carousel format. For
a non-sighted person, the important interaction is that they can
tab through each item. As they tab, relevant information should
be included in the focused area so that they have context on each
piece of content.

As a person tabs through the site, they should naturally tab into
panel 1 of the carousel (without needing to know it is a carousel
panel). Ideally, the panel 1 link should wrap around all panel text.
In that case, the screen reader will read all text. In this example:
Panel 1 title. Here is a panel description that lets someone know
what this panel is about. Panel 1 call to action. Note that for a non-
sighted person, hearing only the link label may not be enough to
give them context.

Figure A

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

WINTER 2018 4A’S - ACCESSIBILITY	 17

A sighted person navigating by keyboard will need a visible focus
indicator. This is a box that appears around content that has key-
board focus. Designers can work with developers to control the
appearance of the visible focus indicator.

If the person presses “return” or “enter” on their keyboard while
the panel has focus, they will be navigated to the link on that
panel. If they press the tab key, focus will be moved to the next
panel. When focus is on the last panel in the set, tabbing again
should bring the next set of panels into view. The action should
occur as though the person had clicked on the “next” arrow.

Once the person has tabbed through all the panel sets, focus
should move to the next interactive element that follows the car-
ousel. Note that for a keyboard user, the carousel cannot wrap. We
do not want to trap the keyboard user in the carousel. They need
to be able to tab past it.

Arrow Buttons Don’t Work for Keyboard Users

Making the arrow keys work with the keyboard is a common mis-
take. The problem is that for a keyboard user, if the focus is on the
arrow keys, it is not on the panel content.

A sighted keyboard user could potentially use the “next” arrow
to cycle through the panels. But consider how the keyboard focus
order would work in that case:

1.	 Focus on panel 1 content.

2.	 Focus on panel 2 content.

3.	 Focus on panel 3 content.

4.	 Focus on “next” arrow.

5.	 Pressing “return” or “enter” moves the carousel to reveal the
next set of panels.

6.	 The user would need to “back-tab” off of the “next” arrow
back onto the panel they are interested in if they want to
follow the link. This is awkward. Note that this functional-
ity would not be accessible for a non-sighted user. The non-
sighted user would hear “next,” the panel-set would move,
and they would have no idea they needed to back-tab to get,
say, the 4th panel content into focus.

Bypassing the Carousel

The sighted person is not forced to use the carousel at all. They
can click around the page wherever they want. Yet keyboard users
are forced to navigate through the carousel in its entirety.

It might not seem like a big deal for a simple carousel like this one.
But what about a larger carousel with lots of panels? Luckily there

is a best practice to allow screen readers to bypass large blocks of
content. In the case of a large carousel, a hidden “skip” link could
appear on keyboard focus. For example, consider a product rec-
ommendations carousel. The link before the carousel could read
“Skip product recommendation carousel.”

DESIGNING CALENDARS

Date-picking functionality is notoriously inaccessible on most web-
sites. With this functionality, collaboration between the technology
and design teams is most critical. It may make sense to sit down
with the developer and look at different calendar plug-ins to see
if you can find an accessible one that meets your needs. However,
at the time of writing, I have not seen an out-of-the box calendar
plug-in that is accessible. The main considerations for an accessi-
ble calendar are the following:

Users are able to tab through the calendar dates with their key-
board. They should be able to tab into the calendar and back out
of the calendar. They should be notified that they are tabbing into
a calendar (for example, with a “choose date from calendar” link).

Dates are read out in their entirety by the screen reader on
focus. For example: The screen reader should NOT phonetically
say “Tue Jun 5,” it should say “Tuesday, June 5.” Note that it is fine
for a sighted person to see common abbreviations like “Tue. Jun.
5”; however, they are not easy to understand when read phoneti-
cally by the screen reader, so the developer should include a full
text version as hidden content.

Users are able to select a date by hitting the enter key (equiva-
lent to a mouse click). This should populate the date field with the
selected date. If the date is incorrect, it should be easy for the user
to return to the calendar and correct it.

There should be a simple text field where a user can type the
date without having to use the interactive calendar in cases where
calendar plug-ins don’t function as described above. In these
cases, it is very important that the date format be flexible, or be
described in the field’s label (e.g. “Date, format dd/mm/yyyy”).

As with all keyboard functionality, these specific directions should
be outlined clearly in the same specifications document that out-
lines mouse click behavior, hover behavior, or tapping behavior. In
this way, a developer reading the specifications will be equipped
to understand the accessibility requirements and develop the func-
tionality accordingly.

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

18	 WINTER 2018 4A’S - ACCESSIBILITY

MODAL WINDOWS OR LIGHTBOXES

There are three main considerations when creating accessible
modal windows or lightboxes:

■■ Keyboard users should be able to open the modal window
content by accessing a link, which may or may not include the
notification that the content will open in a modal window.

■■ The modal must have a close button. Once the modal win-
dow opens, keyboard focus should be on the close button.
If the close button is an icon of an “X,” ensure that the actual
text label of the link reads “close” or “dismiss”. Make sure
that the link text to open the modal and the text to close the
modal give a non-sighted user context to what is happening:
“Find out more about our services” on the link to open, and
“Dismiss services information” on the link to close.

■■ Keyboard focus should be restricted within the modal window
while it remains open. To close the modal window, the user
can access the close button, or use the escape key.

NOTES ON AUDIO AND VIDEO

Audio Description Requirement

Many people are surprised to learn about the audio description
requirement. An audio description includes a description of every-
thing that is going on in the video that is not spoken. For exam-
ple, it can describe the position of the speaker, the scenery in view,
or body language that is not conveyed by the transcript. These
descriptions allow a blind individual to better understand the con-
text of the video.

Accessible Video Requirements

■■ Provide controls (e.g., stop, pause, play, and volume control)
for the video and ensure that such controls are operable with
a keyboard

■■ Follow contrast rules both visually and audibly (e.g., for text
on a background within multimedia as well as between fore-
ground and background noise)

■■ Obey rules designed to prevent seizures (no more than three
flashes per second)

■■ Include synchronized captions

■■ Provide a descriptive text transcript or an audio description
synchronized to the video via a link

■■ Provide a text or audio description when the video has no
audio track

Notes on Using YouTube for Videos

YouTube allows for the creation of accessible videos; however,
there are a number of obstacles that we have identified (as of the
date of this White Paper):

■■ We recommend embedding YouTube videos on your own
website, rather than directing users to the YouTube site in
general. YouTube’s website may not be entirely accessible.

■■ When embedding videos on your own website, we recom-
mend using the HTML5 version (as opposed to the Flash ver-
sion) by having your developer add “?html5=1” to the embed
URL provided by YouTube. This worked well for most brows-
ers, but still had issues in Internet Explorer and Firefox. As a
result, we suggest: 1) adding disclaimer text for those brows-
ers near the video, indicating that full keyboard accessibility
is available on Chrome as well as Android and iOS devices;
2) telling Firefox users that they should add the YouTube
ALL HTML5 add-on to their browser; and 3) telling Internet
Explorer users that Flash must be disabled in their browser.

■■ YouTube can automatically create captions, but there are
errors inherent in this process. It will be necessary to have a
human go through and validate YouTube’s suggested cap-
tions using YouTube’s caption editor tool. YouTube’s automati-
cally generated captions frequently include spelling mistakes,
words that should be shifted to a different caption as well as
throw away words, such as “um,” which can be removed.

Captioning in general is an art to be mastered — perfecting the
timing, describing the speaker, and remembering to include ambi-
ent sounds like music can be a challenge.

GUIDELINES BY DISCIPLINE

The WCAG guidelines are already categorized by level and accord-
ing to the four principles. We have seen above that it is also help-
ful to categorize them by discipline. In this way, we can narrow
the focus area of the disciplines and make it less overwhelming to
understand and meet the guidelines that pertain to each. It also
makes accessibility testing easier when we test accessibility com-
pliance by discipline at each project phase, leaving only code-level
defects at the end for the quality assurance phase.

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

WINTER 2018 4A’S - ACCESSIBILITY	 19

Take the example of creating and testing an experience that con-
tains video content. It is fairly common in a wireframe to see a
placeholder for video content like Figure B, in which a video plays
when a user clicks on it. The keyboard functionality for the video
player is often not described in the wireframe, and the video plugin
itself may not be selected up front, or may be thrust upon the cre-
ative team due to client partnerships with video vendors.

If accessibility aspects of the wireframe are not reviewed during
the wireframe phase, this video player wireframe element will go
through the design phase, and finally to the development phase,
and may contain embedded accessibility issues that a developer
will not be able to fix on her own.

Consider Figure C. Imagine a quality assurance team finally listing
all of the accessibility issues with this video player at the end of the
project. The issues could include:

1.2.1 Prerecorded video only; no link to a transcript All videos
need a transcript. A transcript would be accessed by a link, but
there is no link present in the experience. How should the link be
styled, and where should the link be placed? A developer alone is
unable to fix this issue, because these are questions for a designer.
However, at the end of a project, all of the designers may have
moved on to other projects.

2.1.1 Keyboard The wireframe did not outline how the video
player should work with a keyboard, so the developer might have
used a video player plugin that doesn’t work with the keyboard.
Video plugins are all different, and the experience designer should
discuss plugin options with the developer to be able to detail
how the video player will work. Some video player plugins are not
accessible, and may be the solution that our clients want to use. In
this case, the experience designer should alert the client that their
preferred video player is not accessible so that the issue can be
dealt with (or accepted) up front. A developer cannot “just fix”
this issue, either. An experience designer would need to help
select a plugin up front, or to help adjust an existing plugin’s
functionality to make it work in a usable way. In the situation
above, the experience designer may have left the project by the
time quality assurance phase is in full swing. It is inefficient to call
them back at the end; the issue should be dealt with during the
experience phase itself.

1.4.3 Contrast minimum An interesting point about video con-
tent is that it needs to adhere to the same contrast requirements
as the overall web page. This means that captions or other text in
the video need to have an appropriate contrast against the back-
ground to make them legible. When we develop videos for our cli-
ents (or when our clients provide us with video content), we should
take this requirement into account in a timely manner, and not wait
until the quality assurance phase to fix this issue.

The crux of this issue is that there are guidelines that pertain to
certain disciplines, and these guidelines should be reviewed and
approved during that discipline’s project phase for maximum effi-
ciency. If all of the experience design guidelines are reviewed in
wireframe phase, all of the design guidelines are reviewed in the
design phase, and all of the copywriting is reviewed separately,
then the quality assurance team will be testing only that the design
matches specifications, and it does not have to do accessibility-
specific testing of the design.

QA: AUTOMATED AND MANUAL TESTING

There is no single tool available to quality assurance teams that
covers all aspects of accessibility testing. A certain amount of man-
ual testing is always required. Compare automated and man-
ual testing with this example, using Guideline 1.1.1, Non-Text
Content. This is the guideline that stipulates that all non-text con-
tent (for example, an image) needs to have a text alternative.

Page-Level Automated Testing

There are a number of page-level automated testing tools avail-
able. These include but are not limited to the WAVE toolbar (by

GUIDELINE 1.1.1., NON-TEXT CONTENT
Automated Testing Manual Testing

Finds issues that do not
require human judg-
ment to be detected

Tool detects the pres-
ence or absence of an
alt attribute within an
 tag in the code.

If tool indicates a miss-
ing alt attribute, it
generates an error.

Finds issues that require human judgment to be
detected or resolved

If tool detects alt attribute, it will not generate
an error, but there may still be issues with alt
attribute content.

Human judgment resolves further questions,
such as:

• Should the alt attribute be null or populated?

• What constitutes a descriptive alt attribute?

Figure B Figure C

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

20	 WINTER 2018 4A’S - ACCESSIBILITY

WebAIM), AChecker (by ATutor), aXe (by Deque). Typically these
tools offer the following options for validation:

■■ Direct input: Copy and paste the page code into a text field.

■■ URL: Place the URL of the page to be tested into a text field.

■■ Inline with a toolbar: Requires downloading an extension that
places a toolbar within your browser.

Other tools that help validate an experience’s accessibility at a
page level include the W3C Validator and developer toolbars.
These allow an auditor to validate code syntax (W3C Validator),
turn off images, and highlight headings among other things (devel-
oper toolbar). Page-level automated testing works well for smaller
audits, and for use during development.

Site-Wide Automated Testing

Site-wide automated tools are able, as the name suggests, to audit
an entire site, instead of just one page at a time. As such, they are
best for larger audits, and they are good tools for our clients to
invest in if they have a large experience to audit and maintain. Site-
wide audit tools always have an associated licensing fee to set up,
so usually require persuading our clients to adopt them. There are
a variety of considerations when selecting a site-wide audit tool.

User-friendly: All tools are different, and some may be easier to
use than others.

High-quality results: Tools generate reports. The look and feel
as well as the sorting and filtering features of these reports make
some better than others, depending on what our clients need.

Can test the DOM: This feature relates to a tool’s ability to test
the actual markup on the page, even markup that was generated
dynamically through client-side scripting. Tools should indicate in
their feature section that they can test the DOM, which stands for
Document Object Model.

Can spider the site: This is really a critical feature of a site-wide
tool. Starting at a single URL, the tool should be able to read
through the links on that page and be able to define a site map of
all of the pages on the site, and ensure that all of them are tested
and none are left out.

Integration with QA tools: Some site-wide audit tools can inte-
grate with quality assurance tools like JIRA. Depending which tool
your client uses, this may be considered a benefit.

Manual test guidance: Some tools, while conducting automated
tests, may be programmed to alert auditors of features present
on the site that typically require additional manual testing. For

example, if the tool sees a <form> tag, it may provide as part of
the report the guidance that the auditor should manually try to use
a form on a given page to supplement the automated test. This
can be helpful.

Accessibility level supported: Some tools are only configured to
test level A criteria, while others are configured to test AA or even
some AAA criteria. This is an important thing to know up front.

Manual Testing

Testing an experience manually is the best way to assess whether
or not it is accessible, and it is easier than you think. The main man-
ual test is simply attempting to use the experience with your key-
board alone, without ever touching your mouse.

This is necessary because using the keyboard mimics the func-
tionality that many assistive devices are limited to. For example,
some people who are completely paralyzed may use a device that
requires them to blow a puff of air into a straw in order to change
focus from one element to another—mimicking the functionality of
the keyboard’s tab key. So when we test a site with our keyboard,
we are actually helping to ensure it will work in a variety of assistive
devices.

Note that the WCAG guidelines are device-agnostic, meaning that
there is no particular device (other than some kind of computer)
in which the site needs to work. The only criteria for functioning is
that it must work with the keyboard alone (guideline 2.1.1).

The Screen Reader Experience

The common use case we consider when testing an experience
for accessibility compliance is the screen reader user. The screen
reader user uses a standard web browser with an application that
reads the web browser contents to the user. Users often navigate
the experience with their keyboard tab or arrow keys. It is helpful
to compare how a screen reader user accesses an experience com-
pared to a mouse user.

A mouse user is probably sighted, since they are able to track their
mouse cursor with their eyes. Their eyesight allows them to scan
a page quickly, immediately getting visual context on what that
page is for. For example, sighted users can look at all of the com-
ponents of the view in Figure D and understand them without any
additional narrative. They can get a lot of context by just scanning.
Scanning is digital. Our eyes can jump from any point of this view
to any other point in any order.

But when we design interfaces for keyboard-only users, we have to
consider that their experience is analog. They are forced through

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

WINTER 2018 4A’S - ACCESSIBILITY	 21

an experience from the top of the page to the bottom in a linear
way. Guiding a keyboard user through the experience in Figure
E from the beginning to the end in a way that makes sense is an
experience designer’s challenge.

For non-sighted keyboard users, the experience is often like the
view in Figure F—obscured by poorly labeled interactive elements
and headings that are marked up the wrong way. These are the
issues that we want to uncover through our manual testing efforts.

Testing with the Keyboard Alone

To test with the keyboard alone, navigate to a web page. Use your
tab key to move you through the site. Using your tab key will allow
you to jump between interactive elements, such as links or form
fields. Things to note:

Can you tell which element on the page has focus? The element
that is in focus (the element your cursor is on) should have some
kind of focus indicator, like a box around it, or an underline.

Can you access all of the interactive elements on the page? For
example, the page may have a set of tabs on it, that if you clicked
with your mouse, would reveal additional content on the page. You
should be able to access the content on the tabs with your key-
board alone. Make sure you test all of the interactions on the page
with your keyboard.

Can you access the global navigation of the website? The global
navigation is one of the most important components on a website,
and also one of the most complex. Make sure that elements such
as flyout menus are accessible with the keyboard alone.

Can you submit forms on the website? Make sure that you can
submit the forms with your keyboard alone. Purposely leave infor-
mation out of the form and try to submit it. Is helpful error messag-
ing information provided?

Pay special attention to carousels and calendars, they are some
of the most difficult components to make accessible.

Change to a different breakpoint and do the same tests.

Testing with Keyboard and Screen Reader

Try to do all of the same tests with your screen reader turned on,
not looking at the interface when you test it. This is critical! Many
times when we test with the keyboard and a screen reader, we say
that the experience is accessible, but we are actually compensat-
ing for the bad experience with our sight. For example, we may
“back tab” (use tab key plus shift key) to access content that a non-
sighted user would not know was there.

Be mindful and employ good faith. Do not cheat by looking, really
try to put yourself in the shoes of someone who is non-sighted, and
ask yourself at every step if the experience actually is intuitive, or
if you are accessing the experience the way you are because you
already know how it works. Be diligent! Uncovering an accessibility
issue is part of making the experience much better for everyone,
not just non-sighted people or others who would self-identify as
needing an accessible experience.

Change to a different breakpoint and do the same tests.

Figure D

Figure E

Figure F

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

22	 WINTER 2018 4A’S - ACCESSIBILITY

Testing with a High Contrast Theme

Both MacOS and Windows offer a high contrast mode to their
users. High contrast mode is a tool used by visually impaired users
to increase the readability of content on their computer. This tool
is exceptionally useful for the web as modern websites are using
thinner fonts, minimalist color palettes, and more subtle designs
that can be difficult to read. The user will generally only enable this
mode if the contrast of a website makes it difficult to read. A good
website will offer a quality design so that users will not need to
resort to this mode.

On MacOS, users are given an option to invert their screen color.
This can improve readability of text, isn’t as bright for people
who suffer from light sensitivity, and can help people who suffer
from color blindness discern between colors better. The user can
open System Preferences > Accessibility. The user has a number
of options to choose from; the main option would be to click the
checkbox “invert colors”. This is system functionality and will apply
to all browsers.

On Windows, the user can apply different themes which will
increase contrast of light and dark, hide images, and use bright col-
ored text against dark backgrounds to help make text bolder and
easier to read. The user can enable high contrast mode by going to
Control Panel > Ease of Access > Optimize Visual Display, and then
clicking the “Choose a high contrast theme” under the “high con-
trast” heading. I recommend the “high contrast #1” theme. Once
enabled, the user will be in high contrast mode when they open up
Internet Explorer or Firefox. If using Chrome on Windows, they will
be asked if they wish to install a high contrast plugin.

Testing a website for proper contrast is a simple, low effort task
that can make a huge difference to users without perfect sight. This
is especially important for populations with aging demographics.

Manually Testing by Guideline

The table on page 24 contains manual tests that should be done
to assess if an experience meets the guidelines (this list includes
general keyboard navigation tests outlined above).

Accessibility Testing Methodology

Selecting Pages to Test

Given the number of manual tests above, it should be clear that
manually testing an experience takes time. For large-scale expe-
riences, it would be a time-consuming and potentially prohibitive
task to audit every single page. Luckily, most large-scale experi-
ences are based on reusable templates and components. For the

case of templated experiences, it is unnecessary to test each and
every page. The minimum items that should be tested include:

All representative pages on the site. A representative page set
will include examples of every kind of template and every kind
of component used on the site. The idea is that testing this list of
pages will give you confidence that all of the interactions on the
site are accessible.

A list of all user flows for which the site was designed. For
example, for an eCommerce experience, typical user flows include
but are not limited to the path to registration, the path to login
(including “forgot your password”), and the path to purchase.
The user flows should provide URLs for each page of the journey.
Testing each user flow gives reassurance that the tasks the site is
designed to support are possible to do for a user using a keyboard
or assistive device.

A list of “sanity check” pages. This will involve some redundant
testing of templates or components already covered in the repre-
sentative pages list. The number of pages tested will depend on
the size of the site overall. These pages can be selected by pop-
ularity (in analytics tracking), or because the client feels they are
important. The purpose of testing these pages is as a sanity check
(hence the name), but also because some accessibility issues can
be created through content alone. Meaning, that issues that did
not arise on the representative page list could arise in the sanity
check pages if inaccessible content was authored on those pages.

Selecting Testing Tools

Screen reader software is developed for specific browsers. It is
not the case that you can use any screen reader with any browser.
Consider the following criteria when selecting a testing tool:

Experience of auditor: If the person available to audit the site is
an expert in the Safari/Voiceover browser/screen reader combina-
tion, it may make sense to do the audit using that tool. Consider
the time it would add to learn a completely new tool to do an
audit, and if this is worth it for your client.

Experience of client: If the client is most familiar with a particular
screen reader, they may ask that the audit be done with that screen
reader so they can more easily retest the issues.

Screen reader of choice for users: Ideally, if we could know what
screen reader the majority of users employ, we could test in that
screen reader. However, there is no way to tell through analytics
which screen reader is being used (or if a screen reader is being
used at all). The only way to find this out is for the client to conduct
a screen reader survey. However, many clients are wary of doing
this for it draws attention to their web experience and how acces-
sible it is (or is not). Typically this information remains unavailable

WINTER 2018 4A’S - ACCESSIBILITY	 23

ADDENDUM: ACCESSIBLE DESIGN AND QA BEST PRACTICES

to auditors. The most popular assistive devices reported in an
independent survey conducted by WebAIM in 2015 are (in order):
JAWS (63.7%), Window-Eyes (20.7%), NVDA (43%), and VoiceOver
(30.7%). Usage of JAWS is declining rapidly; usage of Window-
Eyes and VoiceOver is increasing. However, the problem remains
that the users surveyed may not be your client’s users.

Operating system and browser of choice for users: A way to
infer which screen reader might be used is to look at the analyt-
ics reports for operating systems and browsers. For example, if
a client’s website is visited most often by people using the Safari
browser on a Mac, then a good choice of screen reader to test the
site is VoiceOver. If, however, most people visit on Firefox on a
Windows system, a better choice might be NVDA.

It may not matter! The WCAG guidelines are browser/device
independent. That means, from a compliance perspective, that the
only requirement is to MEET the guidelines, NOT to work in a spe-
cific screen reader. This is because, if an experience meets all of
the requirements in the guidelines but still doesn’t work in a screen
reader, it is possible that it is a screen reader-specific issue, not an
issue with the experience. Our clients cannot be held responsible
for screen reader-specific issues.

In the majority of cases, if an experience meets all of the WCAG
guideline criteria in one screen reader/browser combination, pass-
ing all of the manual and automated tests, it will work very well
in any other screen reader/browser combination. It is not neces-
sary and can make our clients less profitable if we tested, for exam-
ple, all of the possible screen reader/browser combinations. At
this point in our accessibility journey, it makes more sense to mind-
fully invest in testing in one screen reader/browser combination
and making sure that it gets done properly, rather than overwhelm-
ing clients with a substantially higher cost to test in multiple screen
reader/browser combinations.

Mobile Device Considerations

For responsive sites, it can be easier and faster to conduct the
majority of accessibility testing from a desktop browser resized to
various breakpoints. In rare cases, a website could have the same
markup for the desktop, tablet, and mobile (or other) breakpoints.
In this case, testing at a single breakpoint would be appropriate.

More typically, interaction and therefore markup variations will
occur between breakpoints. For example, the global navigation
menu on the desktop breakpoint will become a collapsed ham-
burger menu for tablet and mobile breakpoints. In this case, each
breakpoint that has different functionality (markup) must be tested
separately. Again, it is possible to do this on the mobile breakpoint
of a desktop computer.

For mobile sites that are redirected to mobile phones only, test-
ing must be done using a mobile device. For iOS devices, access
Settings > General > Accessibility > VoiceOver > On. This will turn
VoiceOver on. Then navigate to the web page in question (you will
have to tap on applications twice to open them with VoiceOver
on), and navigate through the site by swiping right. Swiping right
will tab you through each node of the site, similar to using the
arrow keys in the browser version of Safari and VoiceOver.

Prioritizing Defects

Typically a project will assign defect priority levels from 1-4 (prior-
ity 1 is the highest, priority 4 is the lowest) by definition. For exam-
ple, a priority 1 defect will prevent a user from accessing content.
Similarly, we can define priority levels to categorize accessibility
related defects:

BROWSER/SCREEN READER COMBINATIONS
Firefox NVAccess (NVDA)

Safari VoiceOver

Internet Explorer
Jaws

Window-Eyes

Problem Type What It Means Priority

Slammed
doors (critical)

Barriers that stop someone from using an app
or feature successfully—or at all. (e.g., func-
tionality doesn’t work with keyboard)

1

Frustrating
(serious)

Problems that slow someone down, or force
them into workarounds (e.g., having to back-
space 10 times to get into a content area,
discovering this after trial and error)

2

Annoying
(moderate)

Things that make the experience less pleasant
maybe even enough to leave (e.g., having a
million “Learn More” links to tab through)

3

Noisy (minor)
Minor issues that damage credibility but are
unlikely to cause problems (e.g., redundant
screen reader content)

4

24	 WINTER 2018 4A’S - ACCESSIBILITY

TABLE: MANUAL TESTING BY GUIDELINE

WCAG Guideline Manual Test Description

1.1.1 All non-text content that is presented to the user has a text
alternative that serves the equivalent purpose. (Level A)

CSS background images should not be used for images that
convey important information. This is because you can’t put
alternate text on a CSS background image. Right-click on an
image to view source, and if there is no tag, then
it is probably a CSS background image. If tool detects alt attri-
bute, it will not generate an error, but there may still be issues
with alt attribute content.

1.3.1 Information, structure, and relationships conveyed
through presentation can be programmatically determined or
are available in text. (Level A)

Validate that changes in text presentation are not used to con-
vey information without using appropriate markup (e.g., text
styled as a heading but not marked up with heading tags), and
that layout tables do not use any attributes associated with data
tables (e.g., IDs and headers for columns/rows, or e.g., Use of
<th> tag, “summary” attribute, etc. for a layout table).

1.3.2 When the sequence in which content is presented affects
its meaning, a correct reading sequence can be programmati-
cally determined. (Level A)

Validate that an HTML layout table makes sense when linear-
ized, i.e., when the table is read from top to bottom, left to right.

1.3.3 Instructions provided for understanding and operating
content do not rely solely on sensory characteristics of compo-
nents, such as shape, size, visual location, orientation, or sound.
(Level A)

Validate that a graphical symbol alone is not used to convey
information (e.g., an empty shopping cart icon vs a shopping
cart icon with an item in it, with no text alternative to indicate
the cart’s status).

2.1.1 All functionality of the content is operable through a key-
board interface without requiring specific timings for individual
keystrokes, except where the underlying function requires input
that depends on the path of the user’s movement and not just
the endpoints. (Level A)

Validate that all critical user flows are achievable through key-
board alone. Validate that all remaining content is accessible
through keyboard alone.

2.1.2 If keyboard focus can be moved to a component of the
page using a keyboard interface, then focus can be moved
away from that component using only a keyboard interface,
and, if it requires more than unmodified arrow or tab keys or
other standard exit methods, the user is advised of the method
for moving focus away. (Level A)

Validate that there are no keyboard traps (interactions you can
get into with your keyboard, but can’t get out of). These would
be most likely to occur in overlays and other interactive ele-
ments on the page, such as video players or image galleries.

WINTER 2018 4A’S - ACCESSIBILITY	 25

WCAG Guideline Manual Test Description

2.4.1 A mechanism is available to bypass blocks of content that
are repeated on multiple web pages. (Level A)

Validate that a link is provided to skip navigation and other page
elements that are repeated across web pages OR that a page
has proper heading structure.

Make sure it actually works to use the “skip navigation” link by
tabbing to it, and hitting “Enter” with your keyboard to follow
the link. Ensure that the content area moves into focus, then tab
again and ensure that the tab focus continues to be in the con-
tent area.

Note: A developer can provide the skip navigation link as a hid-
den anchor link, but it’s helpful for keyboard users not using a
screen reader if the link becomes visible on focus, or is always
visible.

2.4.3 If a web page can be navigated sequentially and the navi-
gation sequences affect meaning or operation, focusable com-
ponents receive focus in an order that preserves meaning and
operability. (Level A)

Validate that navigation order of links, form elements, etc., is
logical and intuitive. Do this by tabbing through all elements. If
the focus area does not move in a sensible way from in the read-
ing order from top to bottom, there is an issue.

2.4.4 The purpose of each link can be determined from the link
text alone or from the link text together with its programmati-
cally determined link context, except where the purpose of the
link would be ambiguous to users in general. (Level A)

Validate that the purpose of each link (or form image button or
image map hotspot) can be determined from the link text alone,
OR from the link text and its context, by doing the following:

(1) Locate content needed to understand how link text describes
the purpose of the link, and (2) Check whether the content is
contained in the same sentence, paragraph, list item, or table
cell, or in the preceding heading.

Validate that links (or form image buttons) with the same text
labels that go to different locations are readily distinguishable
(e.g., not in the same context in the markup).

Note: If the design makes it difficult to include the link text IN
CONTEXT in the markup, then the content should be updated.

3.2.1 When any component receives focus, it does not initiate a
change of context. (Level A)

Validate that when any page element receives focus, it does
not result in a substantial change to the page, the spawning of
a pop-up window, an additional change of keyboard focus, or
any other change that could confuse or disorient the user. (e.g.,
opening a new window when the page is loaded, or using a
script to remove focus when focus is received).

TABLE: MANUAL TESTING BY GUIDELINE (CONT.)

26	 WINTER 2018 4A’S - ACCESSIBILITY

WCAG Guideline Manual Test Description

3.2.2 Changing the setting of any user interface component
does not automatically cause a change of context unless the
user has been advised of the behavior before using the compo-
nent. (Level A)

Validate that required form elements or form elements that
require a specific format, value, or length provide this informa-
tion within the element’s label. The information should be pres-
ent between the <label> tags in the markup. Validate that form
validation errors are presented in an efficient, intuitive, and
accessible manner (e.g., form errors should receive keyboard
focus and be read out by the screen reader).

1.4.4 Except for captions and images of text, text can be resized
without assistive technology up to 200% without loss of content
or functionality. (Level AA)

Validate that text can be resized up to 200% and remain legible.
Test this in Firefox: View > Zoom > Zoom text only, then ctrl+ on
your keyboard to increase the font size on your screen.

2.4.7 Any keyboard operable user interface has a mode of oper-
ation where the keyboard focus indicator is visible. (Level AA)

Validate that it is visually apparent which page element has the
current keyboard focus (e.g., as you tab through the page, you
can see where you are). Note: This may need an associated
design.

3.1.2 The human language of each passage or phrase in the
content can be programmatically determined except for proper
names, technical terms, words of indeterminate language, and
words or phrases that have become part of the vernacular of the
immediately surrounding text. (Level AA)

Validate that the language of page content that is in a different
language is identified using the lang attribute (e.g.,<blockquote
lang=”es”>).

TABLE: MANUAL TESTING BY GUIDELINE (CONT.)

WINTER 2018 4A’S - ACCESSIBILITY	 27

NOTES

1	 Ross, Nick. 80 Days that Changed Our Lives. “Advent of the Internet,” 2012.

2	 WebAIM. “Introduction to Web Accessibility,” 2016.

3	 Henry, Shawn Lawton. W3C. “Introduction to Web Accessibility,” 2005.

4	 Interactive Accessibility. “Accessibility Statistics,” 2008.

5	 http://www.uiaccess.com/myth-textonly.html

6	 https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users

7	 http://www.afb.org/info/blindness-statistics/adults/facts-and-figures/235

8	 Hausler, Jesse. Salesforce UX. “7 Things Every Designer Needs to Know about
Accessibility,” 2015.

9	 https://www.access-board.gov/guidelines-and-standards/communications-and-it/
about-the-ict-refresh/overview-of-the-final-rule

10	 https://www.transportation.gov/sites/dot.dev/files/docs/Kiosk-website-FR-
final%20rule.pdf

11	 https://www.adatitleiii.com/2017/08/website-accessibility-lawsuit-filings-
still-going-strong/

12	 https://www.ada.gov/hrb-cd.htm

13	 W3C. “Web Content Accessibility Guidelines,” 2008.

14	 WebAIM. “Designing for Screen Reader Compatibility,” 2017.

15	 Menard, Jay. The Digital Echidna Blog. “AODA and You: Alphabet Soup—WCAG
2.0 A or AA?” 2013.

16	 https://www.w3.org/TR/UNDERSTANDING-WCAG20/conformance.html

17	 Sherwin, Katie. Nielsen Norman Group. “Placeholders in Form Fields are
Harmful,” 2014.

18	 https://www.w3.org/TR/UNDERSTANDING-WCAG20/media-equiv-audio-desc-
only.html

REFERENCES

Enders, Jessica. SitePoint. “The Definitive Guide to Form Label Positioning,” 2014.

Runyon, Erik. WeedyGarden. “Carousel Interaction Stats - June 2013 Update,” 2013.

W3C. “Using ARIA,” 2017.

Walden, Alison. Accessib.li. “If you must use a carousel, make it accessible,” 2016.

Walden, Alison. Accessib.li. “How to make your wireframes more accessible in five
easy steps,” 2016.

Walden, Alison. Accessib.li. “12 manual tests for accessibility compliance you should
do now,” 2016.

Walden, Alison. Accessib.li. “Project implications of WCAG 2.0 level AA support
(compared to single A),” 2016.

Walden, Alison. Accessib.li. “The Top 5 Most Costly Accessibility Issues,” 2016.

Walden, Alison. Accessib.li. “Creating accessible experiences starts with experience
design,” 2016.

WebAIM. “WebAIM’s WCAG 2.0 Checklist for html documents,” 2013.

WebAIM. “Creating Accessible Forms,” 2013.

WebAIM. “Creating Accessible Tables,” 2017.

WebDev-il, “What is Web Accessibility? How to make web pages accessible.”

Copyright © 2018 Alison Walden, Mike Quattrin and American Association of Advertising Agencies (4A’s)
All rights reserved. No part of this publication may be reproduced or transmitted by any means, electronic, mechanical, photocopying, or
otherwise, without written permission from Alison Walden, Mike Quattrin and the 4A’s.

